Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Value-based decision–making involves multiple cortical and subcortical brain areas, but the distributed nature of neurophysiological activity underlying economic choices in the human brain remains largely unexplored. Specifically, the nature of the neurophysiological representation of reward-guided choices, as well as whether they are represented in a subset of reward-related regions or in a more distributed fashion, is unknown. Here, we hypothesize that reward choices, as well as choice-related computations (win probability, risk), are primarily represented in high-frequency neural activity reflecting local cortical processing and that they are highly distributed throughout the human brain, engaging multiple brain regions. To test these hypotheses, we used intracranial recordings from multiple areas (including orbitofrontal, lateral prefrontal, parietal, cingulate cortices as well as subcortical regions such as the hippocampus and amygdala) from neurosurgical patients of both sexes playing a decision-making game. We show that high-frequency activity (HFA; ɣ and HFA) represents both individual choice-related computations (e.g., risk, win probability) and choice information with different prevalence and regional representation. Choice-related computations are locally and unevenly present in multiple brain regions, whereas choice information is widely distributed and more prevalent and appears later across all regions examined. These results suggest brain-wide reward processing, with local HFA reflecting the coalescence of choice-related information into a final choice, and shed light on the distributed nature of neural activity underlying economic choices in the human brain.more » « lessFree, publicly-accessible full text available April 9, 2026
-
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.more » « less
An official website of the United States government
